Model-free analysis of protein backbone motion from residual dipolar couplings.
نویسندگان
چکیده
On the basis of the measurement of NH residual dipolar couplings (RDCs) in 11 different alignment media, an RDC-based order parameter is derived for each residue in the protein ubiquitin. Dipolar couplings are motionally averaged in the picosecond to millisecond time range and, therefore, reflect motion slower than the inverse overall tumbling correlation time of the protein. It is found that there is considerable motion that is slower than the correlation time and could not be detected with previous NMR methodology. Amplitudes and anisotropies of the motion can be derived from the model-free analysis. The method can be applied provided that at least five sufficiently different alignment media can be found for the biomolecule under investigation.
منابع مشابه
Theoretical analysis of residual dipolar coupling patterns in regular secondary structures of proteins.
A new approach to the interpretation of residual dipolar couplings for the regular secondary structures of proteins is presented. This paper deals with the analysis of the steric and chiral requirements of protein secondary structures and establishes a quantitative correlation between structure periodicity and the experimental values of the backbone residual dipolar couplings. Building on the r...
متن کاملSimultaneous determination of protein backbone structure and dynamics from residual dipolar couplings.
Determination of protein structure classically results in a single average configuration that takes no account of conformational fluctuation. Dynamics are, however, inherently linked to structure and crucial to our understanding of biological function. In this study we have used analytical descriptions of dynamic averaging of residual dipolar couplings (RDCs) to simultaneously determine the bac...
متن کاملEvaluation of uncertainty in alignment tensors obtained from dipolar couplings.
Residual dipolar couplings and their corresponding alignment tensors are useful for structural analysis of macromolecules. The error in an alignment tensor, derived from residual dipolar couplings on the basis of a known structure, is determined not only by the accuracy of the measured couplings but also by the uncertainty in the structure (structural noise). This dependence is evaluated quanti...
متن کاملCABM Symposium Complete protein structure determination using backbone residual dipolar couplings and sidechain rotamer prediction
Residual dipolar couplings provide significant structural information for proteins in the solution state, which makes them attractive for the rapid determination of protein structures. While dipolar couplings contain inherent structural ambiguities, these can be reduced via an overlap similarity measure that insists that protein fragments assigned to overlapping regions of the sequence must hav...
متن کاملProtein backbone motions viewed by intraresidue and sequential HN-Halpha residual dipolar couplings.
Triple resonance E.COSY-based techniques were used to measure intra-residue and sequential H(N)-H(alpha) residual dipolar couplings (RDCs) for the third IgG-binding domain of protein G (GB3), aligned in Pf1 medium. Measurements closely correlate with values predicted on the basis of an NMR structure, previously determined on the basis of a large number of one-bond backbone RDCs measured in five...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 124 20 شماره
صفحات -
تاریخ انتشار 2002